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Abstract
To tackle a multi-label classification problem
with many classes, recently label space dimen-
sion reduction (LSDR) is proposed. It encodes
the original label space to a low-dimensional la-
tent space and uses a decoding process for recov-
ery. In this paper, we propose a novel method
termed FaIE to perform LSDR via Feature-aware
Implicit label space Encoding. Unlike most pre-
vious work, the proposed FaIE makes no as-
sumptions about the encoding process and di-
rectly learns a code matrix, i.e. the encoding re-
sult of some implicit encoding function, and a
linear decoding matrix. To learn both matrices,
FaIE jointly maximizes the recoverability of the
original label space from the latent space, and the
predictability of the latent space from the feature
space, thus making itself feature-aware. FaIE
can also be specified to learn an explicit encod-
ing function, and extended with kernel tricks to
handle non-linear correlations between the fea-
ture space and the latent space. Extensive ex-
periments conducted on benchmark datasets well
demonstrate its effectiveness.

1. Introduction
As an extension of traditional multi-class classification,
multi-label classification allows associating an instance
with multiple labels for describing it more completely. And
it is utilized for tackling numerous real-world applications
like multi-label text classification (Katakis et al., 2008), se-
mantic image annotation (Carneiro et al., 2007) and music
emotion categorization (Tsoumakas et al., 2008b), etc.
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Figure 1. An illustration of the principles of traditional multi-label
classification methods (red) and those with LSDR (blue).

Recently, with the prevalence of web-based applications,
instances in scenarios of multi-label classification tend to
be associated with labels from large vocabularies. For ex-
ample, users in the picture sharing community Flickr can
annotate their images with tags from millions of candi-
dates. As revealed by Kapoor et al. (2012), the large vocab-
ularies force many existing effective multi-label classifica-
tion methods (Boutell et al., 2004; Evgeniou et al., 2005;
Tsochantaridis et al., 2006; Tsoumakas & Katakis, 2007;
Argyriou et al., 2008; Hariharan et al., 2010; Tsoumakas
et al., 2010; Zhou & Tao, 2012) to become unaffordable,
since generally they will learn a predictive model for each
label and combine them in a certain manner for prediction.

With a large vocabulary, the number of needed predictive
models will be quite large, making the training costs unaf-
fordable. To tackle such problems, recently academia has
seen efforts made to perform label space dimension reduc-
tion (LSDR) (Hsu et al., 2009; Tai & Lin, 2010; Kapoor
et al., 2012; Zhou et al., 2012; Chen & Lin, 2012; Wicker
et al., 2012). As illustrated in Fig. 1, for LSDR each orig-
inal high-dimensional label vector is encoded to a low-
dimensional code vector in a latent space. Then predictive
models are trained from instance features to code vectors,
whose quantity is much smaller and thus can significantly
reduce the training costs. To predict an unseen instance,
a low-dimensional code vector is firstly obtained with the
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learnt predictive models on its features and then efficiently
decoded for recovering its predicted label vector. If the
learnt predictive models and the decoding process are ef-
fective enough, LSDR is expected to yield acceptable clas-
sification performance at much lower costs.

Previous researches on LSDR mostly require an explicit en-
coding function, e.g. a linear one, for mapping original la-
bel vectors to code vectors. However, since the optimal
mapping can be complicated and even indescribable, as-
suming an explicit encoding function may not well model
it. In this paper, we propose a novel method termed FaIE
to perform LSDR via Feature-aware Implicit label space
Encoding. Specifically, FaIE directly learns a code matrix
and a linear decoding matrix without any assumption con-
cerning the encoding process but just knowing that the code
matrix consisting of code vectors is the encoding result of
some implicit encoding function. Compared to explicit en-
coding, implicit encoding can reduce the risk of using an
inappropriate predefined encoding function and thus prob-
ably learn a better encoding result. To learn the code matrix
and the decoding matrix, FaIE jointly maximizes the recov-
erability of the original label space and the predictability of
the latent space, making itself feature-aware. FaIE can also
be specified to learn an explicit encoding function, and ex-
tended with kernel tricks to handle non-linear correlations
between the feature space and the latent space.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 elabo-
rates on the proposed FaIE and presents the formula details.
Then experimental settings, results and analyses are given
in Section 4. Finally we conclude the paper in Section 5.

2. Related Work
To tackle a multi-label classification problem with many
classes (i.e. a large vocabulary), many effective methods
were proposed, like constructing a hierarchy of multi-label
classifiers (Tsoumakas et al., 2008a), refining the output
of heuristic efficient classifiers (Dekel & Shamir, 2010), or
performing label selection (Balasubramanian & Lebanon,
2012), etc. Recently, LSDR was also proposed.

To the best of our knowledge, Hsu et al. (2009) could be the
first to focus on LSDR. Specifically, Hsu et al. exploited
the sparsity of the original label space and proposed to lin-
early encode it as compressed sensing (CS) and use stan-
dard recovery algorithms like CoSaMP (Needell & Tropp,
2009) for decoding. As a further research, (Kapoor et al.,
2012) considered both label space compression and pre-
dictive model learning in a single probabilistic model, and
derived a Bayesian framework termed BML-CS for multi-
label classification via jointly optimizing over both.

Moreover, Tai and Lin (2010) proposed to perform princi-

ple label space transformation (PLST) for seeking impor-
tant correlations between labels, which is essentially PCA
(Jolliffe, 1986) for the label space. Chen and Lin (2012)
further proposed feature-aware conditional principal label
space transformation (CPLST), considering the predictabil-
ity of code vectors. Zhou et al. (2012) proposed to take the
signs of linear Gaussian random projection results as the
code vectors and utilize a series of Kullback-Leibler diver-
gence based hypothesis tests for decoding. Wicker et al.
(2012) proposed MLC-BMaD for LSDR via boolean ma-
trix decomposition on the tagging matrix, factorizing it as
the product of a binary code matrix and a binary decoding
matrix. As a special case of linear encoding, (Bi & Kwok,
2013) proposed an efficient randomized sampling proce-
dure for selecting a column subset of the tagging matrix
that can well span it, termed ML-CSSP.

By surveying previous researches on LSDR, we realize that
they mostly require an explicit encoding function for map-
ping original label vectors to code vectors, which, as anal-
ysed previously, may not well model the optimal mapping.
MLC-BMaD seems to be the only one allowing implicit en-
coding, as it directly learns the code matrix without any as-
sumption on the encoding process. However, MLC-BMaD
is feature-unaware, and the learnt code matrix could be less
predictable, which will probably lower the prediction per-
formance. Hence in this paper we propose FaIE, which not
only allows implicit encoding, but also is feature-aware.

3. Proposed Approach
3.1. Preliminaries

Given a set of N training instances with corresponding la-
bels {(xi,yi)}Ni=1, where xi ∈ X ⊂ RF and yi ∈ Y ⊂
{0, 1}K are respectively the F -dimensional feature vector
and K-dimensional label vector of the ith instance, multi-
label classification is to learn the mapping F : X 7→ Y for
predicting the label vector of any unseen instance based on
its features, as illustrated in Fig. 1. Here each entry of the
label vector of an instance indicates whether it belongs to a
certain class (1) or not (0). Feature vectors and label vec-
tors of the training data respectively form the feature matrix
XN×F and the tagging matrix YN×K row by row.

Many existing effective multi-label classification methods
derive F by learning K binary mappings {Fi|Fi : X 7→
Yi, i = 1, 2, . . . ,K}, where Yi ⊂ {0, 1} is the ith di-
mension of the original label space corresponding to the
ith class. When the number of classes (i.e. K) becomes
large, the training costs of those methods would be unaf-
fordable. To tackle the challenge, recently LSDR was pro-
posed. Then learning F would be transformed into firstly
encoding each original label vector to a low-dimensional
code vector in a latent space C ⊂ RL(L � K) with an
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encoding process P : Y 7→ C and then learning a mapping
H : X 7→ C w.r.t the code vectors, which can be derived by
learning L mappings {Hi|Hi : X 7→ Ci, i = 1, 2, . . . , L}
with Ci ⊂ R being the ith dimension of C. And the predict-
ing process for an unseen instance will be transformed into
firstly predicting an L-dimensional code vector in C with
H on its features and then recovering aK-dimensional pre-
dicted label vector with a decoding process Q : C 7→ Y , as
illustrated in Fig. 1. Note that for LSDR here C is derived
from Y rather than X , via explicit encoding like linear en-
coding or implicit encoding such as matrix decomposition,
and generally the decoding processQ needs to be specified
before deriving C, while the mapping H is unspecified and
will be open for any mapping algorithm after C is derived.

3.2. Proposed FaIE

As mentioned previously, FaIE makes no assumptions con-
cerning the encoding process P , and it directly learns a
code matrix CN×L consisting of code vectors and a lin-
ear decoding matrix DL×K by decomposing the tagging
matrix YN×K as the product of both, i.e. Y ∼ CD.

Generally, the classification performance of LSDR meth-
ods depends on both the predictive mapping H and the de-
coding process Q. Therefore, it would be important for
code vectors to be predictable, having a strong correlation
with instance features, as revealed by (Zhang & Schnei-
der, 2011). And the original label vectors should also be
highly recoverable via decoding the code vectors. Then to
better learn C and D, FaIE jointly maximizes the recover-
ability of the original label space and the predictability of
the latent space. Denoting the former as Φ(Y,C,D) and
the latter as Ψ(X,C), its objective function is as follows.

Ω = max
C,D

Φ(Y,C,D) + αΨ(X,C) (1)

where α is a parameter for balancing recoverability and
predictability. Actually, FaIE derives C and D via matrix
decomposition on Y , and utilizes Ψ(X,C), which consid-
ers correlations between X and C, as side information to
make C feature-aware. As will be detailed later, given C,
the optimal D can be derived as a closed-form expression.
Then for model simplicity, the objective function above is
reformulated to be the following one concerning only C.

Ω = max
C

Φ(Y,C) + αΨ(X,C) (2)

3.2.1. RECOVERABILITY OF ORIGINAL LABEL SPACE

To improve the recoverability of the original label space,
the difference between the tagging matrix Y and the recov-
ered one using the code matrix C and the decoding matrix
D, denoted as E(Y,C,D), is expected to be minimized.

E(Y,C,D) = ‖Y − CD‖2fro (3)

where ‖ · ‖fro is the Frobenius norm of a matrix. Given C,
the optimal D to minimize E(Y,C,D) can be derived as
the following closed-form expression by solving ∂E

∂D = 0.

D = (CTC)−1CTY (4)

To avoid redundant information in the latent space and then
enable the proposed FaIE to encode the original label space
more compactly, we assume that dimensions of C are un-
correlated and thus orthonormal, as shown in formula (5) .

CTC = IL×L (5)

where IL×L is an identity matrix. Then the optimal D =
CTY , and formula (3) can be reformulated as follows.

E(Y,C,D) = Tr[Y TY − Y TCCTY ] (6)

where Tr[·] denotes the trace of a matrix. With Tr[Y TY ]
being a constant, minimizing E(Y,C,D) is equivalent to
maximizing Tr[Y TCCTY ], which can be seen as an ex-
pression of the recoverability of the original label space, i.e.
Φ(Y,C). And thus we can derive the following formula.

Φ(Y,C) = Tr[Y TCCTY ] = Tr[CTY Y TC]
s.t. CTC = I

(7)

3.2.2. PREDICTABILITY OF LATENT SPACE

As revealed in (Zhang & Schneider, 2011), to improve the
predictability of the low-dimensional latent space, the code
matrix C is supposed to be strongly correlated with in-
stance features. Here we firstly consider linear correla-
tions, and will handle non-linear ones with kernel tricks
later. Considering a linear projection r for the feature space
and a dimension c of the latent space, i.e. a column of C,
the correlation between features and c, i.e. ρ(X, c), can be
defined as follows.

ρ(X, c) =
(Xr)T c√

(Xr)T (Xr)
√
cT c

(8)

Note that here the definition of ρ(X, c) makes no assump-
tions about the encoding process from Y to c. Accord-
ing to the orthonormality constraint for C, i.e. formula (5),
cT c = 1 will hold for any column of C. Then to maximize
ρ(X, c), we introduce the following optimization problem.

max (Xr)T c s.t. (Xr)TXr = 1 (9)

When given a dimension c of the latent space, the maximal
(Xr)T c reflects its potential maximal correlation with the
feature space, and thus the maximal (Xr)T c can be seen as
an expression of the predictability of c. Specifically, with c
fixed, the optimal r for formula (9), denoted as r∗, can be
derived as follows with the method of Lagrange multipliers.

r∗ =
(XTX)−1XT c√

cTX(XTX)−1XT c
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Note that here we assumeXTX to be invertible, which can
be ensured by adding a tiny value to entries on the diagonal.
Then the predictability of c, denoted as ψ(X, c), can be
derived as follows by substituting r∗ into formula (9).

ψ(X, c) = (Xr∗)T c =
√
cT∆c (10)

where ∆ = X(XTX)−1XT . Therefore, to improve the
predictability of the latent space, each column c of the code
matrix C is supposed to maximize ψ(X, c). As maximiz-
ing ψ(X, c) can be guaranteed by maximizing cT∆c, the
overall predictability of the code matrix C is as follows.

Ψ(X,C) =
∑
i C

T
·,i∆C·,i = Tr[CT∆C]

s.t. CTC = I
(11)

where C·,i is the ith column of C. Based on the formulas
above regarding predictability of the latent space, we can
derive the following lemma.

Lemma 1. For any given matrix CN×L satisfying
CTC = I , Tr[CT∆C] has an upper bound being
min(L, rank(∆)).

For detailed demonstrations, one can refer to the supple-
mentary appendix. The lemma could be helpful for param-
eter tuning of FaIE, i.e. α in formula (2). Because gener-
ally α need not be further increased when Tr[CT∆C] is
observed to converge to its upper bound, otherwise the per-
formance of FaIE will probably go down due to the loss of
recoverability, as will be validated by our experiments.

3.2.3. SOLUTION AND IMPLEMENTATION ISSUES

The objective function of the proposed FaIE, i.e. formula
(2) , can be detailed as follows.

Ω = maxC Tr[CTY Y TC] + αTr[CT∆C]
= maxC Tr[CT (Y Y T + α∆)C]

s.t. CTC = I
(12)

where ∆ = X(XTX)−1XT . Then for optimization, any
column C·,i of the code matrix C can be derived with the
following optimization sub-problem.

Ωi = maxC·,i C
T
·,i(Y Y

T + α∆)C·,i
s.t. CT·,iC·,i = 1, CT·,jC·,i = 0 (∀j < i)

(13)

With the method of Lagrange multipliers, the optimal C·,i
should satisfy the following optimality condition.

(Y Y T + α∆)C·,i = λiC·,i (14)

where λi is the introduced Lagrange multiplier and will
also be the optimal value of the sub-problem. It can be
seen that the optimization for C can be transformed to
an eigenvalue problem. And the normalized eigenvec-
tors of (Y Y T + α∆) corresponding to the top L largest

Algorithm 1 Implementation of FaIE
Input: Feature matrixXtr and tagging matrix Ytr of train-

ing set, feature matrix Xts of test test, predefined pa-
rameter α and target dimension L of the latent space

Output: Predicted tagging matrix Yts of test set
1: ∆ = Xtr(X

T
trXtr)

−1XT
tr

2: Ω = YtrY
T
tr + α∆

3: Ctr = eigenvector(Ω, L) {normalized eigenvectors
of Ω corresponding to the top L largest eigenvalues}

4: D = CTtrYtr {decoding matrix}
5: learn predictive models: H(Xtr)→ Ctr
6: Cts = H(Xts) {predicted code vectors of test set}
7: Yts = round(CtsD)

eigenvalues will form the optimal code matrix C. The
computational complexity for (Y Y T + α∆) is at most
O(N2K + N2F + 2F 2N + F 3). And for the eigenvalue
problem, as L is generally much smaller than N , it can be
solved efficiently with iterative methods like Arnoldi iter-
ation (Lehoucq & Sorensen, 1996) which can achieve an
optimal computational complexity of O(L2N). Then with
C, predictive models from feature space to the latent space
can be learnt to predict code vectors of unseen instances.
And the predicted label vectors can be recovered using the
decoding matrix D = CTY . An illustration of the imple-
mentation of FaIE is given in Algorithm 1.

3.3. Explicit Encoding: a Linear Encoding Case

Though the proposed FaIE makes no assumptions concern-
ing the encoding process, it can also be specified to learn an
explicit encoding function as most previous work, provided
that the function is optimizable, e.g. a linear one.

In the special case of linear encoding where an explicit lin-
ear encoding matrix PK×L is required, the code matrix C
can be expressed as C = Y P . Then by replacing C with
Y P in the objective function of FaIE, i.e. formula (12), we
can derive the following one for linear encoding.

Ω = maxP Tr[PT (Y TY Y TY + αY T∆Y )P ]
s.t. PTY TY P = I

(15)

Similarly, by decomposing Ω into L optimization sub-
problems w.r.t each column of P and using the method of
Lagrange multipliers, we derive that each column P·,i of
the optimal P should satisfy the following condition.

(Y TY Y TY + αY T∆Y )P·,i = λi(Y
TY )P·,i (16)

where λi is the introduced Lagrange multiplier and will
also be the optimal value of the optimization sub-problem
w.r.t P·,i. It can be seen that the optimization for P can
be transformed to a general eigenvalue problem. Specifi-
cally, the normalized eigenvectors corresponding to the top
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L largest eigenvalues will form the optimal P . And the
corresponding linear decoding matrix is D = (Y P )TY .

3.4. Kernel version

With kernel tricks, the proposed FaIE can be extended to
handle non-linear correlations between the feature space
and the latent space to measure the predictability of the
code matrix, which is termed kernel-FaIE.

In kernel-FaIE, each feature vector xi is mapped to the Re-
producing Kernel Hilbert Space (RKHS) as θi, which also
forms a kernel feature matrix Θ row by row. In RKHS, the
inner product 〈θi, θj〉 between θi and θj will be equal to
κ(xi,xj), where κ(·, ·) is the introduced kernel function.
And then with a non-linear kernel function, linear correla-
tions between the RKHS and the latent space will reflect the
non-linear correlations between the original feature space
and the latent space. Similar to formula (8), we can con-
sider a linear projection r′ for kernel features in RKHS and
a column c of the code matrix to measure the correlation
ρ(Θ, c). Like kernel CCA (Hardoon et al., 2004), we re-
quire r′ to be in the span of the kernel feature vectors, i.e.
r′ = ΘTβ where β is a N -dimensional weighting vector.
Then ρ(Θ, c) can be measured as follows.

ρ(Θ, c) = (ΘΘT β)T c√
(ΘΘT β)T (ΘΘT β)

√
cT c

= (Kβ)T c√
(Kβ)T (Kβ)

√
cT c

(17)

whereK = ΘΘT is the kernel matrix. With similar deriva-
tions to subsection 3.2.2, the predictability of c based on
non-linear correlations can be measured as ψ′(X, c) =√
cTΓc with Γ = K(KTK)−1KT . And then the objective

function of kernel-FaIE is as follows.

Ω = maxC Tr[CT (Y Y T + αΓ)C]
s.t. CTC = I

(18)

It can also be transformed to an eigenvalue problem. And
the corresponding linear decoding matrix is D = CTY .

3.5. Relations to previous work and discussions

With the mean values of label vectors shifted as zeros, the
proposed FaIE will degenerate to PLST (Tai & Lin, 2010)
when considering only the recoverability of the original la-
bel space (i.e. α = 0 in formula (12)). Specifically, in this
case, the objective function of FaIE is as follows.

Ω = maxC Tr[CTY Y TC], s.t. CTC = I (19)

The code matrix C consists of the normalized eigenvec-
tors of Y Y T corresponding to the top L largest eigenval-
ues, with the decoding matrix being CTY . As for PLST,
its linear encoding matrix P is formed with normalized
eigenvectors of Y TY corresponding to the top L largest

eigenvalues, with the encoding result and the decoding ma-
trix respectively being Y P and PT . Note that Y Y T and
Y TY are positive semi-definite and share the same positive
eigenvalues. Provided that λi is the ith largest eigenvalue,
we can derive that: 1) Y TY P·,i = λiP·,i; 2) Y Y TC·,i =
λiC·,i; 3) (Y Y T )[Y P ]·,i = Y (Y TY P·,i) = λi[Y P ]·,i; 4)
(Y TY )[Y TC]·,i = Y T (Y Y TC·,i) = λi[Y

TC]·,i. Then
for FaIE and PLST, we can find one-to-one correspon-
dences between the ith columns of their encoding results
(i.e. C·,i =

[Y P ]·,i√
λi

), and between the ith rows of their
decoding matrices (i.e. [CTY ]i,· =

√
λi[P

T ]i,·). There-
fore, when α = 0, FaIE is equivalent to PLST, with
C(CTY ) = (Y P )PT . Yet when α > 0, C will be associ-
ated to instance features, and the encoding process from Y
to C will become complicated and even indescribable.

In the case of explicit linear encoding, i.e. formula (15),
with the mean values of label vectors and feature vectors
shifted as zeros, FaIE has a close connection to CPLST
(Chen & Lin, 2012) if it considers only the predictability
of the latent space. The corresponding objective function
is given as follows.

Ω = max
P

Tr[PTY T∆Y P ], s.t. PTY TY P = I (20)

Meanwhile, the objective function of CPLST is as follows.

Ω1 = max
P

Tr[PTY THY P ], s.t. PTP = I (21)

where H = X(XTX)−1XT = ∆. And thus it can be
seen that in this case FaIE and CPLST will share an iden-
tical objective function but with different constraints, the
former requiring dimensions of the encoding result to be
orthonormal while the latter requiring dimensions of the
linear encoding matrix to be orthonormal.

Another interesting observation regarding FaIE is that
when the predictability of the latent space is over-
emphasized with an assumption that the code matrix can
be directly expressed by the feature matrix, i.e. C = XR
where RF×L is a regression matrix, FaIE will perform di-
mension reduction for both the original label space and the
feature space. Specifically, with C = XR, the objective
function of FaIE, i.e. formula (12), will have a constant
value of predictability, and it can be simplified as follows.

Ω = maxR Tr[RTXTY Y TXR]
s.t. RTXTXR = I

(22)

Here the optimization for R can also be transformed to
a general eigenvalue problem, i.e. (XTY Y TX)R·,i =
λi(X

TX)R·,i, but it requires that L ≤ F . Then C can
be seen as the dimension reduction result from label space
with an implicit encoding function, or the linear dimension
reduction result from feature space with R.
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Table 1. Statistics of datasets
domain instances labels features

delicious text 5,000 983 500
CAL500 music 502 174 68
mediamill video 5,000 101 120
ESPGame image 5,000 1,932 516

4. Experiments
4.1. Experimental settings

To validate the proposed FaIE, we download three bench-
mark datasets in different domains with relatively large vo-
cabularies from Mulan (Tsoumakas et al., 2011) for experi-
ments, i.e. delicious, CAL500, and mediamill. For reducing
computational costs, here we randomly take a subset of de-
licious and mediamill with 5,000 instances. Moreover, fol-
lowing (Hsu et al., 2009), we also conduct experiments on
a randomly selected subset of the image dataset ESPGame,
and take those tags appearing at least twice in the subset to
form a much larger vocabulary. Each instance in ESPGame
is represented with a 516-D feature vector1 extracted with
Lire (Lux & Chatzichristofis, 2008). Some statistics of the
datasets are given in Table 1.

For performance comparison, we take Binary Relevance
(BR) (Fürnkranz et al., 2008), CS (Hsu et al., 2009), PLST
(Tai & Lin, 2010), CPLST and kernel-CPLST (Chen &
Lin, 2012), MLC-BMaD (Wicker et al., 2012) and ML-
CSSP (Bi & Kwok, 2013) as baselines. BR is a widely-
used multi-label classification method that trains a separate
binary relevance model for each label. In our experiments,
we respectively use linear SVM (L-SVM) (Fan et al., 2008)
and linear ridge regression (L-RR) for BR, with the latter
using 0.5 as a threshold to decide the binary (0 or 1) clas-
sification results. Note that BR does not perform LSDR
and thus its performance can be a reference for other al-
gorithms. BML-CS (Kapoor et al., 2012) is not included
since it is sophisticated with numerous parameters to tune.

For FaIE, we evaluate the following variants: 1) FaIE con-
sidering only recoverability, i.e. formula (19), termed R-
FaIE; 2) FaIE considering only predictability for linear en-
coding, i.e. formula (20), termed P-LinearFaIE; 3) FaIE
over-emphasizing predictability, i.e. formula (22), termed
OP-FaIE; 4) FaIE for explicit linear encoding, i.e. formula
(15), termed LinearFaIE; 5) kernel version of FaIE, i.e. for-
mula (18), termed kernel-FaIE. Note that R-FaIE and P-
LinearFaIE are respectively related to PLST and CPLST.

In our experiments, each dataset is evenly and randomly
divided into 5 parts. And then we perform 5 runs for each
algorithm on it, taking one part for test and the rest for train-
ing in each run without duplication. Experimental results

1516-D feature vector: 60-D Gabor, 192-D FCTH, 80-D Edge
Histogram, 120-D Color Layout and 64-D RGB Color Histogram

are measured with widely-used metrics in the field of multi-
label classification, i.e. label-based macroF1 and example-
based accuracy (Zhang & Zhou, 2013), and then averaged
over the 5 runs. Moreover, for each run of any algorithm,
we also conduct 5-fold cross validation on the training set
for selecting model parameters via grid search in prede-
fined value ranges. Specifically, α in the proposed FaIE is
selected from {10−1, 100, . . . , 104}, τ for MLC-BMaD is
chosen from {0.1, 0.2, . . . , 1.0}, and the predefined spar-
sity level in CS is selected from {1, 2, . . . ,M} with M
being the maximal number of labels in an instance, etc.
Following most previous work, we utilize linear ridge re-
gression to learn predictive models from instance features
to code vectors. As for kernel-CPLST and kernel-FaIE,
we empirically utilize the Gaussian kernel function and set
the smoothing parameter σ as twice the mean Euclidean
distance between feature vectors for each dataset. Accord-
ingly, we utilize kernel ridge regression for both to learn
the non-linear predictive models. To decide the binary (0 or
1) predicted results of multi-label classification, we round
each continuous entry of the decoded label vector to 0 or 1
with a threshold of 0.5, as PLST and CPLST.

4.2. Experimental results of LSDR

We perform all algorithms on the datasets with different
values of L/K (mostly from 10% to 50%) where L and K
are respectively the dimension of the latent space and the
original label space, as shown in Table 2, 3, 4 and 5. Note
that for ESPGame, L/K is varied from 5% to 25%, as it
has a much larger vocabulary. Experimental results with
standard errors are given in the supplementary appendix.

From the experimental results, we can draw the following
observations. 1) The proposed FaIE and its linear encod-
ing case LinearFaIE generally outperform other baselines
on each dataset, which well demonstrates their effective-
ness. 2) FaIE outperforms LinearFaIE on all datasets, well
demonstrating the superiority of implicit encoding over ex-
plicit encoding. 3) FaIE outperforms R-FaIE and Linear-
FaIE outperforms P-LinearFaIE, which respectively vali-
dates the importance of predictability and recoverability,
and presents the superiority of jointly considering both. 4)
OP-FaIE yields inferior performance to FaIE and even can-
not perform LSDR for CAL500 when L/K ≥ 40% as the
dimension of feature space is smaller than L, which points
out the weakness of OP-FaIE and validates the superiority
of keeping a good trade-off between recoverability and pre-
dictability. 5) R-FaIE yields nearly the same performance
as PLST, as predicted by our theoretical analysis about their
equivalence. 6) With an identical objective function but
different orthogonality constraints, P-LinearFaIE seems to
be slightly superior to CPLST, which validates the reason-
ableness of assuming the dimensions of the code matrix
to be orthonormal. 7) kernel-FaIE outperforms FaIE on
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Table 2. Experimental results on delicious
label-based macroF1 example-based Accuracy

L/K 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR L-SVM 0.0790 0.1419
L-RR 0.0308 0.0810

CS 0.0057 0.0172 0.0341 0.0366 0.0320 0.0260 0.0534 0.0854 0.0932 0.0927
PLST 0.0196 0.0214 0.0217 0.0217 0.0217 0.0734 0.0762 0.0768 0.0769 0.0768
CPLST 0.0240 0.0244 0.0244 0.0244 0.0244 0.0787 0.0787 0.0788 0.0788 0.0788
MLC-BMaD 0.0180 0.0214 0.0265 0.0277 0.0288 0.0525 0.0682 0.0690 0.0703 0.0705
ML-CSSP 0.0139 0.0197 0.0230 0.0253 0.0266 0.0555 0.0659 0.0724 0.0729 0.0760
R-FaIE ('PLST) 0.0197 0.0213 0.0216 0.0215 0.0216 0.0736 0.0764 0.0771 0.0772 0.0771
P-LinearFaIE (∼CPLST) 0.0369 0.0407 0.0412 0.0412 0.0412 0.0892 0.0971 0.0987 0.0987 0.0987
OP-FaIE 0.0472 0.0515 0.0526 0.0527 0.0514 0.1073 0.1083 0.1084 0.1082 0.1083
LinearFaIE 0.0411 0.0431 0.0434 0.0435 0.0435 0.0984 0.1058 0.1061 0.1061 0.1061
FaIE 0.0544 0.0591 0.0602 0.0603 0.0586 0.1198 0.1207 0.1203 0.1202 0.1116
kernel-CPLST 0.0341 0.0341 0.0341 0.0341 0.0341 0.1048 0.1048 0.1048 0.1048 0.1048
kernel-FaIE 0.0566 0.0688 0.0726 0.0744 0.0750 0.1448 0.1496 0.1506 0.1507 0.1508

Table 3. Experimental results on CAL500
label-based macroF1 example-based Accuracy

L/K 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR L-SVM 0.1397 0.2436
L-RR 0.0569 0.1995

CS 0.0677 0.0820 0.0906 0.0976 0.1142 0.1130 0.1299 0.1626 0.1904 0.1835
PLST 0.0604 0.0605 0.0606 0.0609 0.0608 0.2099 0.2103 0.2103 0.2106 0.2104
CPLST 0.0640 0.0643 0.0644 0.0645 0.0645 0.2003 0.2007 0.2009 0.2010 0.2010
MLC-BMaD 0.0485 0.0444 0.0420 0.0472 0.0468 0.1286 0.1215 0.1194 0.1244 0.1255
ML-CSSP 0.0453 0.0498 0.0507 0.0528 0.0543 0.1806 0.1880 0.1913 0.1958 0.1966
R-FaIE ('PLST) 0.0596 0.0600 0.0600 0.0601 0.0600 0.2099 0.2109 0.2109 0.2109 0.2106
P-LinearFaIE (∼CPLST) 0.0800 0.0976 0.1000 0.0998 0.0998 0.2093 0.2210 0.2205 0.2206 0.2206
OP-FaIE 0.1034 0.1080 0.1088 - - 0.2283 0.2262 0.2251 - -
LinearFaIE 0.1062 0.1107 0.1105 0.1105 0.1105 0.2329 0.2300 0.2301 0.2299 0.2300
FaIE 0.1199 0.1245 0.1260 0.1249 0.1245 0.2413 0.2414 0.2417 0.2384 0.2379
kernel-CPLST 0.0754 0.0774 0.0774 0.0774 0.0774 0.2139 0.2148 0.2148 0.2148 0.2148
kernel-FaIE 0.1178 0.1243 0.1250 0.1290 0.1291 0.2429 0.2443 0.2422 0.2430 0.2419

Table 4. Experimental results on mediamill
label-based macroF1 example-based Accuracy

L/K 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR L-SVM 0.0554 0.3130
L-RR 0.0454 0.4173

CS 0.0056 0.0145 0.0134 0.0311 0.0274 0.0103 0.0296 0.0343 0.1403 0.1357
PLST 0.0419 0.0435 0.0436 0.0436 0.0436 0.4117 0.4144 0.4142 0.4141 0.4143
CPLST 0.0433 0.0440 0.0440 0.0440 0.0440 0.4142 0.4148 0.4149 0.4149 0.4148
MLC-BMaD 0.0412 0.0426 0.0425 0.0423 0.0425 0.4027 0.4037 0.4027 0.4027 0.4027
ML-CSSP 0.0343 0.0406 0.0428 0.0416 0.0437 0.3378 0.3954 0.4058 0.4045 0.4148
R-FaIE ('PLST) 0.0419 0.0438 0.0441 0.0440 0.0440 0.4121 0.4150 0.4150 0.4150 0.4151
P-LinearFaIE (∼CPLST) 0.0425 0.0444 0.0453 0.0452 0.0452 0.4135 0.4145 0.4151 0.4155 0.4156
OP-FaIE 0.0450 0.0469 0.0472 0.0474 0.0471 0.4163 0.4185 0.4182 0.4177 0.4179
LinearFaIE 0.0444 0.0463 0.0464 0.0461 0.0461 0.4154 0.4172 0.4160 0.4153 0.4154
FaIE 0.0570 0.0595 0.0609 0.0602 0.0607 0.4327 0.4339 0.4338 0.4334 0.4336
kernel-CPLST 0.0492 0.0521 0.0521 0.0521 0.0521 0.4228 0.4234 0.4240 0.4240 0.4240
kernel-FaIE 0.0682 0.0805 0.0852 0.0857 0.0855 0.4401 0.4440 0.4447 0.4423 0.4385

Table 5. Experimental results on ESPGame
label-based macroF1 example-based Accuracy

L/K 5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

BR L-SVM 0.0213 0.0726
L-RR 0.0014 0.0452

CS 0.0004 0.0006 0.0013 0.0013 0.0018 0.0166 0.0213 0.0445 0.0467 0.0505
PLST 0.0008 0.0008 0.0008 0.0008 0.0008 0.0457 0.0457 0.0457 0.0457 0.0457
CPLST 0.0008 0.0008 0.0008 0.0008 0.0008 0.0469 0.0470 0.0470 0.0470 0.0470
MLC-BMaD 0.0009 0.0009 0.0010 0.0009 0.0010 0.0450 0.0449 0.0458 0.0446 0.0446
ML-CSSP 0.0008 0.0005 0.0007 0.0007 0.0008 0.0432 0.0280 0.0357 0.0321 0.0397
R-FaIE ('PLST) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0455 0.0455 0.0453 0.0455 0.0453
P-LinearFaIE (∼CPLST) 0.0015 0.0018 0.0020 0.0021 0.0021 0.0394 0.0491 0.0554 0.0581 0.0581
OP-FaIE 0.0019 0.0024 0.0024 0.0024 0.0026 0.0593 0.0596 0.0593 0.0591 0.0595
LinearFaIE 0.0021 0.0022 0.0023 0.0024 0.0024 0.0556 0.0638 0.0639 0.0659 0.0670
FaIE 0.0023 0.0028 0.0028 0.0029 0.0028 0.0641 0.0640 0.0666 0.0669 0.0690
kernel-CPLST 0.0009 0.0009 0.0009 0.0009 0.0009 0.0488 0.0483 0.0488 0.0483 0.0488
kernel-FaIE 0.0038 0.0045 0.0054 0.0058 0.0062 0.0831 0.0834 0.0837 0.0840 0.0841
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Table 6. Average training costs (in seconds) of algorithms (“per-
forming LSDR + training predictive models”) with L/K = 10%.

delicious ESPGame

BR L-SVM 28.168 (0.000 + 28.168) 377.035 (0.000 + 377.035)
L-RR 49.993 (0.000 + 49.993) 101.940 (0.000 + 101.940)

CS 5.057 (0.064 + 4.993) 10.364 (0.203 + 10.161)
PLST 5.387 (0.396 + 4.991) 12.783 (2.581 + 10.201)
CPLST 7.080 (2.132 + 4.948) 16.684 (6.486 + 10.198)
MLC-BMaD 21.267 (16.276 + 4.990) 77.251 (67.058 + 10.193)
ML-CSSP 5.346 (0.371 + 4.975) 12.819 (2.640 + 10.180)
FaIE 10.012 (5.032 + 4.980) 20.110 (9.909 + 10.201)

all datasets, which demonstrates its effectiveness to handle
non-linear correlations between the feature space and the
latent space. Moreover, kernel-FaIE yields superior per-
formance to kernel-CPLST, which outperforms CPLST. 8)
On all datasets, as L/K increases, the performance of FaIE
varies a little, which is due to the orthonormality constraint
in formula (5) for enabling FaIE to compactly encode the
original label space with a smaller L. Similar observations
can be obtained on other variants, PLST and CPLST, which
are also orthogonally constrained. Actually, we find that
even with L/K > 50%, this phenomenon still exists.

Moreover, in Table 6 we also report the average time costs
for LSDR methods to perform LSDR and train predictive
models over 5 runs on the largest delicious and ESPGame,
with L/K = 10%. As a reference, the time costs of BR are
also reported. All algorithms are conducted with Matlab on
a server with an Intel Xeon E5620 CPU and 24G RAM, ex-
cept that BR with L-SVM is conducted using LIBLINEAR
(Fan et al., 2008). Then we can draw the following ob-
servations. 1) Compared with BR, all LSDR methods can
help to reduce the total training costs. 2) For performing
LSDR, FaIE generally needs higher costs than CS, PLST,
CPLST and ML-CSSP, though with superior classification
performance. And it needs lower costs than MLC-BMaD,
which performs boolean matrix decomposition for implicit
encoding with a computational complexity of O(LNK2).

4.3. Parameter analysis

Furthermore, we conduct experiments to see the effects of
the only parameter α in the proposed FaIE. Fig. 2 gives
an illustration of the variances of multi-label classification
performance (sub-figure 2(a)) and the value fluctuations of
predictability and recoverability in the objective function
(sub-figure 2(b)) as α varies in {10−2, 10−1, · · · , 104, 105}
in a run on delicious with L/K = 10%. From the illustra-
tion we can draw the following observations. 1) The perfor-
mance of FaIE, in terms of macroF1 and accuracy, firstly
increases and then decreases as α varies from 10−2 to 105.
It further validates the reasonableness of jointly consider-
ing recoverability and predictability, as a good trade-off
between both can yield a superior performance. 2) As α
increases, the value of recoverability will decrease while
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Figure 2. Effects of α in FaIE on the performance of multi-label
classification (sub-figure 2(a)) and the values of recoverability and
predictability (sub-figure 2(b)) on delicious, with L/K = 10%
and the theoretical upper bound min(L, rank(∆)) = 98.

that of predictability will increase and converge to its the-
oretical upper bound, i.e. min(L, rank(∆)), as ensured
by Lemma 1. Similar results are also obtained on other
datasets and given in the supplementary appendix.

5. Conclusion
For tackling a multi-label classification problem with many
classes, in this paper we propose an effective method
termed FaIE to perform LSDR via feature-aware implicit
label space encoding. Unlike most previous work, FaIE
makes no assumptions concerning the encoding process.
And it directly learns a feature-aware code matrix and a
linear decoding matrix via jointly maximizing recoverabil-
ity of the original label space and predictability of the
low-dimensional latent space. Moreover, FaIE can also be
specified to learn an explicit encoding function as previous
work, and extended with kernel tricks to handle non-linear
correlations between the feature space and the latent space.
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